Sollten Sie im linken Frame kein Video sehen, dann haben sie wahrscheinlich noch nicht den Real Player installiert. Unter www.real.com finden Sie den kostenlosen Real-Player Basic (etwas herumsuchen !).

Von der Vorlesung gibt es auch das Audio MP3 File " Regelung " zum Herunterladen. Ein neues Service - nun müssen Sie nur mehr die CD selber machen.


Aufbau des Gehirns

Das menschliche Gehirn kann funktionell, anatomisch und zytologisch in verschiedene Gebiete unterteilt werden. Für die Modellierung ist es wichtig, diese einzelnen Gebiete zu kennen. Leider kennen wir nicht von allen Gebieten den exakten Aufbau, aber meist wissen wir, wofür ein Gebiet zuständig ist. Diese Information erhielt man oftmals durch Erkrankungen des Gehirns. Tumore, Hirnhautentzündungen und Schlaganfälle führen zu typischen Zerstörungen des Gehirns. Leider sind diese Zerstörungen meist nicht punktuell, sondern flächenhaft. Deshalb muss man sehr vorsichtig mit diesen Daten umgehen.


3.0 Die Teile des Gehirns

Das Gehirn untergliedert sich in fünf große Bereiche:

· das verlängerte Rückenmark (Myelencephalon)
· das Hinterhirn auch Rautenhirn (Metencephalon oder Rhombencephalon)
· das Mittelhirn (Mesencephalon)
· das Zwischenhirn (Diencephalon)
· das Endhirn (Telencephalon)

Das Myelencephalon oder auch das verlängerte Rückenmark hat die Aufgabe Signale vom Gehirn zum Körper und umgekehrt weiterzuleiten.

Das Metencephalon (Hinterhirn) kann man wieder in zwei Bereiche unterscheiden. Ein Bereich ist die Pons (Brücke). Der andere Bereich ist das Kleinhirn (Cerebellum). Das Kleinhirn besitzt eine stark gefaltete Rinde. Die Aufgabe des Kleinhirn besteht in der Kontrolle des sensomotorischen Systems. Wenn das Kleinhirn ausfällt, dann ist die präzise Bewegungskoordination und die motorische Anpassung eingeschränkt.

Abbildung 3.1: Das Gehirn lässt sich in verschieden Bereiche unterscheiden. In der Darstellung sind auch die 4 Gehirnventrikel im Querschnitt gut erkennbar.

Das Mesencephalon (Mittelhirn) lässt sich wieder in mehrere funktionelle Einheiten unterscheiden. Zum einen gibt es das Tectum, das zwei paarige Ausbeulungen besitzt. Das hintere Paar - Colliculus inferior dienen der Hörverarbeitung, das vordere Paar - Colliculus superior - unterstützt die Sehverarbeitung. Durch diese beiden Kerne wird die Seh- und Hörinformation unabhängig von anderen Arealen verwaltet. Im Tectum werden keine komplexen Muster verarbeitet, es wird nur eine grobe Abschätzung über die Umwelt getroffen. Damit kann rasch auf mögliche Umweltbedrohungen reagiert werden - manchmal werden dann aber auch harmlose Umweltreize als gefährlich eingestuft, da das System nur mit sehr einfachen Mustern umgehen kann.
Der zweite große Bereich des Mittelhirns ist das Tegmentum. Teile der Formatio Reticularis ziehen durch das Tegmentum, das auch noch über mehrere Kerne verfügt: Die Substantia grisea centralis, die Substantia nigra und der Nucleus ruber. Die Substantia grisea centralis scheint eine wesentliche Rolle bei der Übermittlung schmerzreduzierender Wirkungen von Opiaten zu spielen. Für die Steuerung von motorischen teilrhythmischen Bewegungen ist die Substantia nigra zuständig. Auch der Nucleus ruber hat Einfluss auf das sensormotorische System.

Das Diencephalon (Zwischenhirn) umfasst zwei Strukturen, zum einen den Thalamus, zum anderen Hypothalamus. Der Thalamus umfasst verschiedene Kerne. Viele dieser Kerne dienen als Schaltstelle für sensorischen Input. Die vorverarbeiteten Signale werden dann in die Großhirnrinde weitergeleitet. Der Thalamus besitzt aber auch noch einige unspezifische Kerne, die der Modulation der Synchronisation in der Großhirnrinde dienen. Über diese Kerne werden auch verschiedene Rindenareale miteinander verschaltet.
Der Hypothalamus enthält eine Vielzahl von Kernen, die der Steuerung motivationaler Zustände dienen. Über diese Kerne kann die Hypophyse zur Hormonfreisetzung angeregt werden. Über die Hypophyse kann der Hormonspiegel im Blut geregelt werden, umgekehrt kann aber auch der Hormonspiegel die Hypophyse und die damit verbundenen Gehirnstrukturen beeinflussen. Die Funktion der Mamillarkörper - zwei Kerne des Hypothalamus - ist bisher heute leider noch nicht geklärt.

Als besonders wesentlich ist die Formatio Reticularis zu erwähnen. Dieser Bereich fasst ungefähr 100 Kerne vom verlängerten Rückenmark bis zum Mittelhirn zusammen. Die Formatio Reticularis wird auch manchmal als aufsteigendes reticuläres Aktivierungssystem bezeichnet (ARAS). Diese Kerne scheinen für die Steuerung der Aufmerksamkeit, des Schlafes und Herz- Kreislaufreflexe zuständig zu sein. Die genaue Funktion vieler Kerne ist bis heute noch nicht geklärt - wenn allerdings einzelne Kerne beschädigt werden, dann kann dies zu beträchtlichen Schädigungen (Autismus) führen.

 


Abbildung 3.2: Eine dreidimensionale Darstellung verschiedener Bereiche des Gehirns.

Das Telencephalon oder auch Endhirn stellt den größten Bereich des Gehirns dar. Die Großhirnrinde oder auch der Neokortex dient der Speicherung und Verarbeitung aller einlangenden Informationen (siehe Kapitel Großhirnrinde). Die unterschiedlichen Bereiche der Großhirnrinde sind durch Faserverbindungen miteinander verbunden. Diese Verbindungen stellen den größten Teil des Volumens des menschlichen Gehirns dar. Ein Teil der Großhirnrinde ist der Hippocampus, der sich allerdings wesentlich von der übrigen Rinde unterscheidet. Die Hippocampusformation ist anders aufgebaut, als die Großhirnrinde, und sie dient ausschließlich der Gedächtniskonsolidierung.

In vielen Lehrbüchern wird die Hippocampusformation als Teil des limbischen Systems angesehen. Zum limbischen System wir die Amygdala, der Gyrus cinguli (ein Bereich der Großhirnrinde), der Fornix, das Septum und die Mamillarkörper angesehen. Diese Kerne und Rindenareale sind sehr stark miteinander verbunden.

 


Abbildung 3.3: Die Kerne, Gebiete der Großhirnrinde und Faserzüge des limbischen Systems.


Deshalb spricht man auch von einem System. Allerdings hat der Hippocampus eine andere Aufgabe als manche übrigen Kerne. So dient der Hippocampus der Gedächtnisspeicherung, während die Amygdala (Mandelkernkomplex) der Verarbeitung von Emotionen dient. Von manchen Kernen ist die Wirkungsweise noch nicht bekannt, beziehungsweise höchst umstritten (Mamillarkern). Zum Teil findet auch die Geruchsverarbeitung im limbischen System statt. Ob die Bezeichnung limbisches System noch aufrecht erhalten werden kann, wird sich zeigen. So ist der Hippocampus eine spezielle Faltung der Großhirnrinde, die zwar wichtige Verbindungen zum limbischen System hat, aber dennoch seine Hauptverbindung in die Großhirnrinde hat.

Zum Telencephalon gehören auch die Basalganglien. Diese Kerne spielen eine entscheidende Rolle bei der Entstehung von Willkürbewegungen. Sie setzen sich aus dem Nucleus caudatus (Schweifkern) und dem Putamen zusammen und werden gemeinsam als Steifenkörper (Striatum, Corpus striatum) bezeichnet. Auch der Globus pallidus wird zu den Basalganglien gerechnet.

 

3.1 Der Hypothalamus - eine Gruppe von Kernen

Der Hypothalamus steuert viele Prozesse im Gehirn und im Körper. So wird zum Beispiel der Schlaf-Wachrhythmus, die Körpertemperatur und das Körpergewicht gesteuert. Deshalb sei kurz erläutert, was man unter den Begriffen Steuern und Regeln versteht.


3.1.1 Steuerung und Regelung

Steuern ist ein Vorgang bei dem eine oder mehrere Größen als Eingangsgrößen in einem System andere Größen als Ausgangsgrößen beeinflussen. Die Beeinflussung ist von den Gesetzmäßigkeiten des Systems abhängig.

Betrachten wir einen Gleichspannungsmotor. Über den Strom steuern wir die Drehzahl, das heißt wenig Strom geringe Drehzahl, großer Strom hohe Drehzahl. Bei diesem Beispiel ist der Strom die Eingangsgröße, die Drehzahl ist die Ausgangsgröße. Durch eine Veränderung der Eingangsgröße (Strom) kann die Ausgangsgröße (Drehzahl) verändert werden. Im Idealfall würde bei einem konstanten Strom die Umdrehungszahl konstant bleiben.
Kommt es aber zu einer Änderung des Lastverhaltens, mehr Gewicht muss gezogen werden, dann ändert sich die Umdrehungszahl. Alle Größen die eine Veränderung der Ausgangsgrößen nach sich ziehen werden als Störgrößen bezeichnet. Dies können externe Faktoren wie eine Laständerung oder auch interne Faktoren wie eine Änderung der Impedanz (Innenwiderstand) sein. Kennzeichnend für eine Steuerung ist der offene Wirkungsablauf, Störgrößen werden nicht berücksichtigt.

Das Regeln ist ein Vorgang, bei dem die zu regelnde Größe die ganze Zeit erfasst wird, mit einer Führungsgröße verglichen wird und entsprechend an die Führungsgröße angeglichen wird. Der Wert der Führungsgröße ist der Sollwert, der aktuell gemessen Wert ist die Istgröße, die zu regelnde Größe ist die Regelgröße.
Für unser Beispiel bedeutet dies, dass ein Messmechanismus (Drehzahlmessgerät) angebracht werden muss. Über dieses Messgerät kann die Spannung nach Bedarf geregelt werden. Wenn die Führungsgröße konstant ist, wird von einem Festwertregler gesprochen. Wenn sich die Führungsgröße ändert, aufgrund von äußeren oder inneren Beeinflussungen, spricht man von einem Folge- oder Zeitplanregler.
Kennzeichnend für eine Regelung ist der Sollwert-Istwert-Vergleich, der laufend in einem geschlossenem Wirkungskreislauf durchgeführt wird.

Abbildung 3.5: Die Rückkopplung bei einer Regelung.

In der oberen Graphik 4.1 sehen wir ein Blockschaltbild eines Regelkreislaufes. Wesentlich ist die Invertierung des Istwerts (x Þ -x). Damit kann eine Differenz e=w?x gebildet werden. Die Regeldifferenz wird nun für das Stellglied in geeigneter Weise umgewandelt, die Stellgröße, und wirkt solange auf den Effektor (Heizung, Motor usw.) bis der Istwert gleich dem Sollwert ist. Das entspricht einer Gegenkopplung (negative Rückkopplung) und die Differenz zwischen Soll- und Istwert wird geringer. Würde die Rückkopplung mit einem positiven Vorzeichen durchgeführt werden, ergäbe dies eine Mitkopplung (positive Rückkopplung) und die Störgrößen würden noch weiter verstärkt werden.


3.1.2 Regulation der Körpertemperatur

Alle Tiere haben eine ideale Betriebstemperatur. Diese Temperatur ist nach oben durch die Denaturierung der Eiweißstoffe, was zu einer Zerstörung der Zellen führt, begrenzt. Nach unten ist die Grenze durch die Bildung von Eiskristallen in Zellen gekennzeichnet. Doch viele biochemische Prozesse besitzen eine optimale Temperatur zwischen diesen Extrema.

Kaltblüter können keinen direkten Einfluss auf ihre Körpertemperatur nehmen. Ihre Körpertemperatur hängt sehr stark von der Umgebung ab. Zur Temperaturregelung können diese Tiere nur das Mikroklima wechseln.
Warmblüter können über den Stoffwechsel ihre eigene Temperatur regeln. Sie sind damit unabhängig von der Umwelt. Bereits 1880 konnte gezeigt werden, dass eine Region des Zwischenhirns, der Hypothalamus für die Temperaturregelung verantwortlich ist.
Kommt es bei Warmblütern zu einer Erwärmung des Blutes im Hypothalamus so ist schwitzen, hecheln und keuchen das Resultat. Kommt es umgekehrt zu einer Abkühlung des Blutes und damit des Hypothalamus, so muss der Organismus auf wärmeerzeugendes Verhalten umstellen.

Es kommt zum Zittern, Verengungen der Hautadern und zu einer Anregung der Stoffwechselprozesse um mehr Wärme zu produzieren. Interessanterweise beginnen Menschen schon zu zittern wenn sie in eine kältere Umgebung kommen bevor die Hypothalamustemperatur gesunken ist. Also müssen externe Sensoren, auf der Haut, den Hypothalamus mit Informationen versorgen.
Bei körperlicher Arbeit kommt es zu einer Schweißproduktion um den Körper vor Überhitzung zu bewahren. Die Schweißproduktion setzt schon ein bevor die Hypothalamus- oder Körpertemperatur steigt. Bei Hunden fanden sich spezielle Rezeptoren in den Muskeln und Gelenken, die in Kontakt mit dem Hypothalamus stehen.

Abbildung 3.6: Regelsystem für die Körpertemperatur.

Im Hypothalamus befinden sich zwei Gruppen von Neuronen, die empfindlich auf Temperaturabweichungen reagieren. Eine Gruppe reagiert auf die Abweichung in Richtung Kälte, eine andere in Richtung Wärme. Die Abweichung der Temperatur führt zu einer proportionalen Änderung der Feuerfrequenz der beteiligten Strukturen. Diese Neuronengruppen werden von den Wärme- und Kälterezeptoren auf der Haut innerviert. Zusätzlich können die Rezeptoren in Muskeln und Gelenken die wärmeempfindlichen Neuronen erregen, während die kälteempfindlichen Neuronen gehemmt werden. Die einzelnen Gruppen im Hypothalamus können sich gegenseitig hemmen.




Links: Leider stehen die Links nicht zur Vefügung.



Applet: Leider stehen keine Applets zur Verfügung.


Fragen: Diese Fragen sollten nach der Vorlesung beantwortet werden können,

Aus welchen großen Bereichen besteht das Gehirn?

Welche Aufgaben (grob) haben die unterschiedlichen Bereiche des Gehirns?

Welche drei Aufgaben hat das limbische System?

Welche Struktur des limbischen Systems ist kein Kern?

Was ist der Unterschied zwischen Gegenkopplung und Mitkopplung?

Welche Faktoren beeinflussen die Körpertemperatur?

Erläutern sie die Regulation der Körpertemperatur?