Sollten Sie im linken Frame kein Video sehen, dann haben sie wahrscheinlich noch nicht den Real Player installiert. Unter www.real.com finden Sie den kostenlosen Real-Player Basic (etwas herumsuchen !).

Von der Vorlesung gibt es auch das Audio MP3 File " Aufmerksamkeit_MP3 " zum Herunterladen. Ein neues Service - nun müssen Sie nur mehr die CD selber machen.


Die Einteilung der EEG-Kurven in vier verschiedene Rhythmen ist ziemlich willkürlich. Trotzdem zeigt sich, daß verschiedene Zustände des Gehirns mit diesen Rhythmen korrelieren. Natürlich misst das EEG die Aktivität von einzelnen Neuronen, aber die Gruppen von Neuronen werden von anderen Subsystemen gesteuert. Diese Subsysteme können in den Gruppen eine Synchronisation erleichtern oder erschweren. Somit stellt sich die Frage, welche Subsysteme für diese Rhythmen zuständig sind.

Für den Alpha-Rhythmus ist eine besondere Struktur des Thalamus zuständig. Der Thalamus ist eine Gruppe von Kernen im Inneren des Gehirns. Man unterscheidet zwei Arten von Kernen:

Spezifische Kerne: Alle Sinnesorgane, mit Ausnahme des Riechens, liefern ihre Signale an den jeweiligen spezifischen Kern. Die Informationsübertragung ist topologisch geordnet, das heißt benachbarte Reizzellen aus den Sinnesorganen liefern ihre Signale an benachbarte Neuronen im Thalamus und diese liefern wiederum ihre Signale an benachbarte Neuronen in der Großhirnrinde. Im Thalamus kommt es zu einer Vorverarbeitung (siehe "Das Sehsystem"). Die Verbindung vom Thalamus zur Großhirnrinde ist reziprok. Man spricht von einer thalamo-cortico-thalmischen Schleife.

Unspezifische Kerne: Die unspezifischen Kerne innervieren ebenso die Großhirnrinde, allerdings diffus. Die Abbildung von den Kernen in die Großhirnrinde ist nicht topologisch geordnet. Über diese Kerne kann das Erregungsniveau der Neuronen in der Großhirnrinde gesteuert werden. Dies erleichtert oder erschwert die Synchronisation in den jeweiligen Arealen. Die unspezifischen Kerne erhalten ihre Signale aus anderen tieferliegenden Strukturen des Gehirns, insbesonders der Formatio reticularis. Manche Wissenschafter gehen so weit, daß sie diese Thalamuskerne als eine direkte Fortsetzung der Formatio reticularis bezeichnen.

Eine besondere Struktur - der Nucleus reticularis thalami - wird zu den unspezifischen Kernen gezählt, obwohl er eine flächige Struktur besitzt. Diese Zellschicht umgibt alle Kerne des Thalamus. Alle thalamo-cortico-thalmischen Schleifen laufen durch diese Schicht. Er enthält von den durchziehenden Faserbündeln durch Abzweigungen erregende Signale (EPSP´s). Umgekehrt innerviert der Nucleus reticularis thalami die durchgehenden Faserbündel inhibitorisch.


Abbildung 5.10: Zwei EEG-Ableitung, mit und ohne Gleichspannungskomponente, während eines visuellen Stimulus.

Wenn der Thalamus viele sensorischen Afferenzen erhält, befindet sich der jeweilige thalmische Kern im Transfermodus. Das heißt, daß die Signale von der Sensorik direkt über den Thalamus in die Großhirnrinde gelangen. Im EEG kann man eine sogenannte Desynchronisation beobachten. Dieser Begriff selbst ist ziemlich widersprüchlich. Im EEG erkennt man, daß durch ein Desynchronisation die Amplituden geringer und die Frequenzen höher werden (siehe Abb. 5.10). Praktisch kommt es aber während der Desynchronisation im EEG-Bild zu starken Synchronisationen in den betroffenen Gebieten der Großhirnrinde. Meist führt dies zu einer Frequenz der Aktivität des neuralen Assembles von rund 40 Hertz. Diese Frequenz ist in der Regel für die klassische Auflösung zu groß - das Schreiberpapier bewegt sich zu langsam um höhere Frequenzen sinnvoll aufzuzeichnen.


Abbildung 5.11: Die Verknüpfungsstruktur zwischen einem spezifischen Thalamuskern, dem Nucleus reticularis thalami und der Großhirnrinde.

Wenn kaum sensorischen Reize den Thalamus erreichen, dann befindet sich der Thalamus im Oszillatormodus. Die thalamo-cortico-thalmische Schleife wird vor allem durch den Nucleus reticularis thalami aktiviert. Dabei treten abwechselnd kaum Signale und dann kurzzeitig viele Signale als Bursts mit einer Frequenz von 7-14 Hertz auf. Bei verminderter sensorischer Afferenz werden einlaufende Signale, die nicht synchron sind, in den Neuronen der spezifischen Thalamuskerne durch Kontrolle inhibitorischer Rückkopplungen des Nucleus reticularis thalami in gruppierte Entladungen umgewandelt. Diese Entladungen führen über die Verbindungen zur Großhirnrinde zum typischen Alpha-Rhythmus.

Abbildung 5.12: Die Verschaltung zwischen dem Nucleus reticularis thalami, den Neuronen des Thalamus und der Formatio reticularis. Erregende Einflüße werden durch Pfeile und hemmende durch einen Block dargestellt


Welche Aufgabe hat der a-Rhythmus für die Informationsverarbeitung des menschlichen Gehirns. Deshalb ist es notwendig, die psychologischen Bedingungen für das Auftreten des a-Rhythmus näher zu betrachten. Im Ruhezustand treten die a-Wellen vor allem im postzentralen Teil des Gehirns auf. In diesem Gebiet liegt das primäre visuelle, das primäre somatosensorische und zum Teil das primäre auditive Areal. Vor allem das Sehzentrum ist vorrangig in diesem Gebiet vertreten. Dieser Sinn ist der einzige der bewusst durch den Lidschlag abgeschaltet werden kann. Die Aufmerksamkeit wird zu einem wesentlichen Teil durch die Formatio reticularis gesteuert. Diese Kerne erhalten von allen sensorischen Einheiten (wahrscheinlich) unspezifische Signale. In der Formatio reticularis werden diese sensorischen Signale zusammengefasst. Die Formatio reticularis innerviert viele Areale in der Großhirnrinde und im Thalamus. Je stärker die Formatio reticularis aktiv ist, umso leichter können Synchronisationen in der Großhirnrinde auftreten. Beim Schließen der Augen gelangen weniger Informationen in den seitlichen Kniekörper. Dies führt zu einer Abnahme der Aufmerksamkeit. Akustische und somatosensorische Reize können den Abfall der Aufmerksamkeit nur begrenzt verhindern (mit der Ausnahme bei blinden Personen). Wenn die Formatio reticularis verstärkt durch die Sensorik aktiviert wird, dann hemmt sie einerseits den Nucleus reticularis thalami und andererseits wird der Thalamus soweit aktiviert, daß die Signale aus der Sensorik im Thalamus vorverarbeitet werden und dann zur Großhirnrinde gelangen (siehe Abb. 5.12). Wenn die Hemmung der Formatio reticularis auf den Nucleus reticularis thalami aufhört, dann kann sich eine Gegenkopplungsschleife zwischen dem Thalamus und dem Nucleus reticularis thalami bilden. Wahrscheinlich sind dabei auch sogenannte Pace-Maker Zellen beteiligt. Diese Zellen geben, wenn sie aktiviert werden, mit einem konstanten Rhythmus kurzfristig mehrere Aktionspotentiale ab und dann bleiben sie für längere Zeit inaktiv. Dieser einsetzende a-Rhythmus, bei visueller Reizdeprivation garantiert auch bei geschlossenen Augen - mit Ausnahme, daß das Gehirn sich nicht im Schlafzustand befindet - bei akustischen oder anderen alarmierenden Reizen eine sofortige Reaktionsbereitschaft. Der a-Rhythmus kann aber auch durch intensives Assoziationen abgelöst werden. Dabei sind andere Rindenareale beteiligt, insbesonders der Schläfen- und der Frontallappen. Diese beiden Regionen sorgen für Synchronisationen von Neuronen im primären visuellen Areal. Es ist dabei völlig egal ob die Synchronisationen durch visuelle Reize oder durch die Innervation von anderen Rindenarealen verursacht wird.

Abbildung 5.13: In der oberen Darstellung erkennt man ein typisches ABR, während im unteren Bereich ein pathologisches ABR dargestellt ist.


Mit der Technik elektrische Signale des Gehirns zu detektieren, können aber auch noch andere Bereiche, als die Großhirnrinde vermessen werden. So stellt das Stammhirn-EEG einen wichtigen Beitrag dar, um die Hörfähigkeit zu vermessen. Die Elektroden werden im Bereich des Halses befestigt. Diese Stammhirnpotentiale haben eine besonders geringe Amplitude (weniger als ein Mikrovolt) und der Hals darf unter gar keinen Umständen bewegt werden - der Patient muss meist fixiert werden. Ein besonderes Stammhirnpotential ist das ABR (auditory brainstem response). Dieses Potential wird durch einen Klicklaut ausgelöst. Dieser Klicklaut wird vom Ohr detektiert. Von dort aus gelangen die Aktionspotentiale hintereinander zu 7 verschiedenen Kernen. In jedem Kern kommt es zu einer charakteristischen Aktivität. Aufgrund der Weiterleitungsgeschwindigkeit der Aktionspotentiale werden die Kerne der Reihe nach aktiviert. So kann man zeitlich hintereinander 7 verschiedene Potentiale messen. Wenn einzelne Kerne beschädigt sind, kommt es zu verminderten Potentiale. Betrachtet man Abbildung 5.13 so kann man im oberen Bereich das ABR mit 7 verschiedenen, zeitlich versetzten, Peaks gut erkennen. Das untere ABR weist einige Abnormitäten auf. Die ersten 3 Peaks sind zeitlich verschoben und ab dem 4 typischen Ausschlag fehlt das Signal gänzlich. Dies lässt sich durch einen Tumor erklären. Der Tumor fordert Raum, dadurch werden die Nervenstränge, die die ersten 3 Kerne verbinden, gezerrt. Das Signal muss einen längeren Weg nehmen - es kommt zu einer zeitlichen Verschiebung. Leider hat der Tumor den vierten Kern zerstört und die Signale können dort nicht mehr weiterverarbeitet werden.


5.1 Das Magnetoenzephalogramm

Das EEG ist wohl das Analysegerät des aktiven Gehirns, das am höchsten weiterentwickelt wurde. Dennoch können mit dem EEG einige interessante Denkvorgänge nicht beobachtet werden, zum Beispiel die elektrische Aktivität der Großhirnrindenbereiche, die innerhalb der Furchen liegen. Eine Methode misst das Magnetfeld, der depolarisierten Neuronen. Sie wird als Magnetoenzephalographie MEG bezeichnet. Das MEG ist zum EEG komplementär. Das heißt mit dem MEG können Gehirnaktivitäten gemessen werden, die mit dem EEG nicht gemessen werden können und umgekehrt.


Abbildung 5.14: Die Ausbreitung eines Magnetfeldes orthogonale zur Stromrichtung innerhalb eines Neurons.


Im Prinzip misst ein MEG die Magnetfelder, die durch die elektrischen Signale entstehen. Wenn die Membran im Bereich des apikalen Dendriten depolarisiert wird, entsteht ein elektrisches Feld, das mit einem EEG gemessen werden kann. Diese Depolarisationswelle wandert nun zum Zellkörper. Dabei fließt ein Strom. Bei jedem Strom entsteht orthogonal zur Flussrichtung ein Magnetfeld. Dieses Magnetfeld kann nun gemessen werden. Da das Magnetfeld senkrecht zur Stromrichtung steht, können mit dieser Methode auf der Schädeloberfläche nur horizontal liegende, elektrisch aktive Gruppen von Neuronen vermessen werden.

Das gemessene neuromagnetische Feld ist äußerst schwach und liegt in der Größenordnung von 10-12 Tesla. Im Vergleich liegt das ständige Erdmagnetfeld bei rund 10-5 Tesla. Deshalb ist es notwendig den Messraum sehr gut gegen äußere Einflüsse abzuschirmen. Des weiteren müssen die Sensoren eine hohe Sensibilität besitzen. Als Sensoren verwendet man gerne SQUID´s (superconducting quantum interference device), die aber erst bei einer Temperatur von 4° Kelvin arbeiten. Sie müssen mit flüssigem Helium gekühlt werden.

Der große Vorteil des MEG besteht darin, daß das Magnetfeld nicht durch die Kopfhaut beziehungsweise durch den Schädelknochen beeinflusst wird. Über den Abfall der Signalstärke ist es möglich - mit gewissen Grenzen - die neurale Aktivität in der Tiefe des Gehirns zu vermessen. Die Stärke des Feldes gibt Auskunft über die Entfernung der neuralen Aktivität zum Sensor.

Leider sind der Aufwand und die Kosten für eine MEG-Untersuchung sehr aufwendig.


5.2 Der Positron-Emissions-Tomograph (PET)

Der Positron-Emissions-Tomograph stellt sicher eines der spannendsten Neuerungen in der Diagnostik dar. Mit diesem Gerät ist es möglich, das Gehirn beim Denken zu betrachten, insbesonders lassen sich die Denkvorgänge visualisieren.

Die Grundidee hinter diesem Gerät besteht darin, den erhöhten Verbrauch von Sauerstoff und Glucose bei Denkvorgängen zu messen. Wenn Neuronen öfters feuern, muss das Membranpotential aufrecht erhalten werden. Dies geschieht unter anderem durch die Ionenpumpen. Diese Ionenpumpen benötigen Energie, damit sie arbeiten können. Dadurch steigt auch die Durchblutung im Gehirn. Dies wurde schon 1890 vermutet, und konnte kurz darauf bewiesen werden. Man stellte fest, daß besonders aktive Bereiche bei epileptischen Anfällen anschwellen.

Später, im Jahr 1961, konnte man schon viel detaillierter die erhöhte Durchblutung messen. Man injizierte den Patienten eine physiologische Salzlösung mit gelöstem radioaktiven Xenon133-Gas direkt in eine Hirnarterie. Mit einer Spezialkamera mit 254 Detektoren konnte die erhöhte Radioaktivität bei erhöhter Durchblutung gemessen werden. Diese Bilder waren noch nicht besonders aussagekräftig, sehr wohl aber der Schritt in die richtige Richtung.


Abb. 5.15: Der Kopf ist in einer Ebene von g-Detektoren umgeben, die indirekt den Ort der Paarvernichtung detektieren.

Mit besseren Detektoren, einer aufwendigeren Elektronik konnte dann der PET entwickelt werden. Dieses Mal wird aber nicht radioaktives Gas direkt gemessen. Man verwendet einen Positron-Emitter. Dabei handelt es sich um ein radioaktives Isotop, das Positronen aussendet. Bei einem Positron handelt es sich um ein Elektron mit einer entgegengesetzten Ladung. Wenn ein Elektron und ein Positron zusammentreffen, dann vernichten sich beide (Paarvernichtung) und es werden 2 Gammateilchen (Photonen) frei, die in genau entgegengesetzte Richtungen fliegen. Rund um den Kopf sind nun lauter Detektoren angebracht. Wenn nun 2 Detektoren, die genau gegenüber liegen, gleichzeitig aktiviert werden, dann kann man sehr genau rückrechnen, wo die Paarvernichtung stattgefunden hat. In den Bereichen, in denen die Durchblutung ansteigt, dort werden sich vermehrt Positron-Emitter sammeln. Natürlich werden von dieser Stelle aus, mehr Gammateilchen ausgestrahlt.

In das Blut wird radioaktives Wasser, angereichert mit dem Positron-Emitter O15, verwendet. Dieses Isotop hat eine Halbwertszeit von rund 2 Minuten. Es werden aber auch noch andere Isotope wie N13 (2 min), C11 (10 min) oder F18 (110 min) verwendet. In den Klammern ist die jeweilige Halbwertszeit angegeben.

Diese Methode klingt unheimlich verlockend - dem Gehirn beim Denken zusehen. Aber man muss auch auf ein paar Probleme hinweisen. Ein Neuron feuert im Ruhezustand rund ein bis zehn mal pro Sekunde. Das heißt, jedes Neuron ist auch im Ruhezustand aktiv. Man muss nun die Änderung, das heißt die Zunahme, der Durchblutung messen. Leider sind singuläre Denkprozesse nicht leicht zu beobachten, denn wenn man sich an etwas erinnert, dann werden neue Erinnerungen initiiert und Handlungen beeinflusst und so weiter. Das bedeutet, daß der selbe Reiz oder auch das selbe Gedankenmuster öfters "gedacht" werden muss. Aus mehreren dieser Durchläufe kann man sich die Verteilung der Aktivität bei einem Reiz in einer Scheibe des Gehirns berechnen. Dann muss dieselbe Person noch an "nichts" denken. Damit erhält man die Hintergrundaktivität des Gehirns. Wenn man beides voneinander abzieht, wissen wir welche Bereiche des Gehirns (in einer Scheibe) eine erhöhte Durchblutung bei der Reizung besitzen. Damit kennen wir aber nur, die Aktivität bei standardisierter Reizung von einem Individuum. Nun muss die Testreihe noch auf mehrere Personen angewandt werden, da nicht alle Gehirne anatomisch gleich aufgebaut sind. Das heißt, man muss von mehreren Individuen mit und ohne Reiz eine PET-Aufnahme machen, und dies mehrmals.

Leider ist auch die Auflösung der Gamma-Detektoren noch nicht ausreichend, um einzelne Details erkennen zu können. Aber mit einigen Tricks aus der Statistik ist es schön möglich, interessante Details erkennbar zu machen. Der große Vorteil dieser Methode besteht vorallem darin, daß man auch einen Blick in das Innere des Gehirns machen kann, ohne den Schädel öffnen zu müssen. Gerade bei der Verarbeitung von Informationen in den Basalganglien oder dem limbischen System kann man auf sehr interessante Daten hoffen.


Abb. 5.16: Darstellung von verschiedenen PET-Aufnahmen einzelner Patienten.

 



Links: Leider stehen die Links nicht zur Vefügung.



Applet: Leider stehen keine Applets zur Verfügung.


Fragen: Diese Fragen sollten nach der Vorlesung beantwortet werden können,

Welche Grobeinteilung der EEG-Kurven gibt es und welche Bedeutung haben diese?

Wie versteht man unter dem Begriff "Desynchronisation"?

Erläutern sie die Verschaltung der Formatio reticularis thalmi?

Was kann man mit einem MEG messen?

Wofür ist das EEG und wofür ist das MEG geeignet?

Wie funktioniert ein PET?